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Random-Bond lsing Chain in a Transverse 
Magnetic Field: A Finite-Size Scaling Analysis 
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We investigate the zero-temperature quantum phase transition of the random- 
bond Ising chain in a transverse magnetic field. Its critical properties are identi- 
cal to those of the McCoy-Wu model, which is a classical Ising model in two 
dimensions with layered disorder. The latter is studied via Monte Carlo simula- 
tions and transfer matrix calculations and the critical exponents are determined 
with a finite-size scaling analysis. The magnetization and susceptibility obey 
conventional rather than activated scaling. We observe that the order parameter 
and correlation function probability distribution show a nontrivial scaling near 
the critical point, which implies a hierarchy of critical exponents associated with 
the critical behavior of the generalized correlation lengths. 

KEY WORDS: Disordered systems; quantum spins; McCoy-Wu model; 
finite-size scaling; anisotropic correlations; Monte Carlo simulations; products 
of random matrices. 

Qui te  recent ly there has been a g rowing  interest  in the ze ro - t empera tu re  
q u a n t u m  critical behav io r  of disordered spin systems. T h e r m a l  f luc tuat ions  
are absen t  here and  the phase t r ans i t ion  is d r iven  by the in terp lay  be tween 
r a n d o m n e s s  and  q u a n t u m  f luctuat ions.  In  order  to t une  the system to criti- 
cality one  can  ei ther  vary the s t rength  of the disorder ,  as, for instance,  in 
spin-�89 X X Z  chains,  ~l~ or  one can  cont ro l  the s t rength  of the q u a n t u m  fluc- 
tua t ions  directly by an  external  t ransverse  magne t ic  field in spin models  
with a s t rong  Is ing an iso t ropy .  The  la t ter  case is par t icu la r ly  in teres t ing  
since exper imenta l i s t s  are able  to invest igate  the effect of a t ransverse  field 
on  the glass t r ans i t ion  in the Is ing spin glass L i H o , . Y l _ x F 4  at low tem- 
peratures.  Iz~ O n  the theoret ical  side m u c h  progress has been made  since 
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then: the infinite-range model has been solved analytically, 1~)'3 a Migdal-  
Kadanoff  renormalization group calculation has been made, ~6~ the critical 
exponents in two and three dimensions have been determined via Monte 
Carlo simulations, :'81 and new results for the one-dimensional case have 
been derived via a renormalization-group analysis. 191 

In the latter papers, focusing on the critical behavior in finite dimen- 
sions of these quantum models, it has been pointed out that their universal 
properties are identical to those of classical Ising models with layered 
d i sorder :  In particular the Ising spin chain in a transverse field can be 
mapped onto the M c C o y - W u  model, ~l J3~ for which various exact results 
have been derived. The critical exponents of the order parameter fl and the 
correlation length v as well as the dynamical exponent z have been found 
recently via a renormalization-group (RNG)  analysis by Fisher/9~ 

The aim of the present paper is to perform a numerical investigation 
of the finite-size scaling behavior of the Ising spin chain in a transverse 
magnetic field. Such an analysis has not been performed yet for this model 
and bears some new features concerning the finite-size scaling of 
anisotropic systems. ~j4~ It can also be seen as a test ground for numerical 
methods applied to systems, for which, in contrast to this model, no quan- 
titative theoretical prediction are at hand (e.g., for the cases considered in 
refs. 7 and 8). Finally, it provides a check to what extent analytical predic- 
tions, like those made in ref. 9 and which are valid asymptotically for an 
infinite system with rather unusual properties, can be detected in systems 
of finite size. 

The model under consideration is described by the quantum 
Hamiltonian 

HQ = - - ~  Jio'~tT,+, -- V Z 0" 7 (1) 
i i 

where a are spin-l/2 Pauli matrices, F is the transverse field strength, and 
the exchanges Ji a r e  quenched random variables obeying a distribution 
P(J). At zero temperature the system (1) has a ferromagnetic phase trans- 
ition to long-range magnetic order at a critical value F, which depends on 
the bond distribution P(J). We are interested in the critical properties of 
this transition. However, as shown in refs. 9, 11, and 13 the magnetization 
behaves already nonanalytically at higher values of F,., giving rise to, e.g., 
a divergence of the longitudinal susceptibility at higher values of F. 

3 For earlier work on the mean-field theory of quantum spin glasses see Goldschmidt and 
Lai ~4J and references therein. For the mean-field theory of intinerant spin glass models see 
Oppermann) 5~ 

4 For recent work on layered lsing models see Mikheev and Fisher "~ and references therein. 
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The ground-state energy of this one-dimensional quantum model (1) is 
equal to the free energy of the two-dimensional classical Ising model ~is~ 

H = - ~  YiS,.jSi+ t . j -  K ~, Si, jSi./+t (2) 
i , j  i , j  

at a certain finite temperature T. Here S~.j= _+1 are classical Ising spins, 
the site index i runs along the x (space) direction, and the index j along the 
T (imaginary time) direction of a two-dimensional square lattice. Following 
refs. 7 and 8, we can rescale the bond strengths Yi and coupling constant 
K without changing the universal properties. For numerical convenience we 
set K =  1 and take a binary distribution 

P(J) = � 8 9  j~ ) + � 8 9  J2) (3) 

where we put j~ = 1. The layered random-bond Ising model (2) with the 
bond distribution (3) has a ferromagnetic phase transition at a critical tem- 
perature T,. defined by c~l 

log coth(I/T,.) + log coth( jJTc)  = 4/T,. (4) 

and the universal properties (like exponents, etc.) are identical to those of 
the quantum chain (1) at F,. and zero temperature. Therefore we study 
model (2) at T,.(j2) by Monte Carlo simulations of rectangular lattices of 
size L x L~. The largest size in the r direction was L~= 160, whereas that 
in the space direction x, which corresponds to the length of the quantum 
chain (1), was L = 16. Hence the disorder average over the distribution (3) 
could be done exactly by generating all nonequivalent bond configurations 
(whose number is approximately 2L/L). To have more confidence on the 
data from the Monte Carlo simulation we have compared our results to 
those obtained from transfer matrix calculations. The advantage of the lat- 
ter is that the results are exact, but the drawback is that one is limited to 
small system sizes L ~< 10. In all cases we found no significant deviations 
between the results of the two methods. 

The correlation length of the quantum chain (1) diverges as 
~ ( F -  Fc)-"  when approaching the ferromagnetic transition. The charac- 

teristic relaxation time of the quantum dynamics is expected to diverge as 
r ~ ~:, with z being the dynamical exponent. These two diverging scales can 
naturally be found in the classical model (2): due to the extreme anisotropy 
one expects the correlation length in the space (or x) direction to diverge 
like ~ ~ ( T - T , . ) - "  and the correlation length in the imaginary time (or 3) 
direction like ~ , - , ( T - I " , . )  .... . Following a nice argument by Mikheev, 5 

5 We would like to thank  Lev Mikheev  for a very enl ightening discussion on this point. See 
also Mikheev.  cl6~ 
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one might imagine the system close to T, as being composed of roughly 
rectangular, ferromagnetic/paramagnetic domains, which are located (in 
the space direction) at segments of the chain where strong/weak bonds are 
dominating. The correlation length ~ in the time direction is then given by 
the average distance of domain walls in semiinfinite strips of width ~ being 
ferromagnetically ordered, thus (~ oc exp(a() (see, e.g., ref. 17). This sup- 
ports very much an activated dynamics scenario with z = o0, as found in 
the RNG analysis. ~9~ However, we begin the analysis by assuming a finite 
z and will see how far we get. 

At the critical point (i.e, T =  T~) various thermodynamic quantities 
are expected ~4) to depend only on the scaling variable L/L ,  the aspect 
ratio or the shape of the system. For instance, we would have for the 
averaged spontaneous magnetization 

M =  [ ( rn)  ]~  .~ L-a/"~(LJL "-) (5) 

where m = (L~L)-1 rZi i Sz jr is the magnetization per site, ( - . . )  means 
the thermal average, and [. .-]av means the disorder average�9 In Fig. 1 we 
show a scaling plot according to (5) obtained by Monte Carlo simulations 
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Fig. 1. Scaling plot of the magnetization M(L, L,) for  J2 = 0.1 at T c. I t  y ie lds  z = 1.65 + 0.05 

and f l /v=0.17+0.01.  The insert shows the scaling plot of the susceptibility ;((L, L,) with 
y ' / v = 2 . 3 + 0 . 1  and z as forM. 
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for different shapes and sizes (note that the disorder average is done 
exactly) at j2=0.1  and T =  T,.= 1.32038. It yields fl/v=O.17+_O.O1 and 
z=1 .65_0 .05 .  We also looked at j2=0.05 for which T,.=1.14710, and 
obtain - =  1.70+0.05 and fl/v =0.18_0.01.  The RNG prediction is v = 2  
(for the averaged correlation length), fl = ( 3 -  x//-5)~ 0.38, c9) which yields a 
ratio fl/v ~0.19, which agrees roughly with our estimate. 

The exponent z decreases as J2 increases, approaching z = 1 for J2 = 1 
and indicating the crossover to the pure case. This is why we used small 
values for j2 to ensure that what we see is the critical behavior of the disor- 
dered model. On the other hand, we tried to avoid too small values of j2 
in the Monte Carlo simulations, since then the critical temperature 
decreases too much and equilibration becomes more difficult. 

The insert of Fig. 1 shows the scaling behavior of the susceptibility at 

J2 = 0.1, 

x(L, L,) = L~L[ (m 2 > ] ~  ~ L</"~(L~/L :) (6) 

for which we find y'/v = 2.3 _+ 0.I (we used the value z = 1.65 obtained from 
the scaling of the magnetization). Note that y' is not the critical exponent 
that describes the divergence of the susceptibility in an infinite system by 
approaching the temperature T,. from above, since this quantity is expected 
to diverge already at a temperature higher than TcJ 9'lm~ The prediction for 
an anisotropic system obeying hyperscaling ~4) is ~,'/v + 2~/v = d+ z. Insert- 
ing d =  1 and the values for ~/v and z given above, this relation is fulfilled 
very well. For the magnetization and the susceptibility conventional scaling 
seems to work well for these system sizes. 

The averaged cumulant g . v = 0 . 5 1 3 - ( m 4 > / < m Z > 2 ] a  v is expected to 
scale like 

g,v(L, L~)= ~(L,/L=) (7) 

and a scaling plot is shown in Fig. 2 with z =  1.55 +0.05 for j2 = 0.1, which 
is slightly lower than the estimate from the spontaneous magnetization. 
Furthermore, the data collapse is not as good as in Fig. 1. Even worse is 
the scaling behavior of the cumulant ~ = 0 . 5 ( 3 -  [<m)4"]a~,/[<m)2]2av ). A 
systematic shift in the maximum to smaller values for increasing system 
sizes L indicates that this quantity is not dimensionless as expected naively. 
The natural scaling assumption [<rn)~],v,~L-~P/"rhk(LJL -') does not 
seem to be correct here. As a consequence, the order parameter probability 
distribution P ( ~ ' ) =  [ 6 ( < m ) -  J g)]av does not scale in a trivial way like 
P(Jg)~LP/"f ' (JILP/",LJL=)--as it does, e.g., in conventional spin 
glasses~8~--which we checked explicitly by looking at the magnetization 
histograms for systems with constant aspect ratios L~ ~ L=. 

822/77/5-6-10 
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Scaling plot of the averaged cumulant g~(L,L,) for j2=0.1 at T=T, with 
z = 1.55 + 0.05. 

To have an independent check of this scenario we have compared the 
above results with those obtained from the transfer matrix calculation. We 
have used the method recently introduced in ref. 19 for the exact calcula- 
tion of the free energy derivatives. The method has been extended to a 
finite rectangular lattice with periodic boundary condition in both direc- 
tions. By expressing the cumulants of the magnetization as derivatives of 
the free energy, we have computed g,v and ~ for system sizes up to 8 x 256. 
Since there are no numerical derivatives involved and the average over dis- 
order is performed by summing over all possible configurations, the 
calculation yields the exact values. In all cases we did not find significant 
difference between these results and those of the Monte Carlo simulations. 

We have also calculated the averaged spin-correlation function at T,., 
which is defined as 

C(r, t)= [ ( Si, jSi+r, j+t)  ]a v (8) 

For the averaged correlations in the time direction C(0, t) one expects ~41 
for L~ oc L: a behavior 

C(0, t) ~ t -"~ + (L, - t) -~ l  (9) 

where the second term on the r.h.s, takes into account the periodic bound- 
ary conditions. In the insert of Fig. 3 we have depicted C(0, t) for various 
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Fig. 3. Insert: Correlation function in the (imaginary) time direction C(0, t) for j2 =0.05 at 
T= T~. The system sizes are 4 x 16, 6 x 32, 8 x 64, 12 x 100, and 16 x 160, i.e., their aspect ratio 
is close to the maximum of the cumulant gay and therefore roughly constant. The full curve 
is a least square fit to C(0, t) oc t -"~ + (160- t) -"~ and yields q• =0.23 + 0.01. The main part 
of the figure shows the correlation function in the space direction C(r, 0) for J2 = 0.05 at 
T= T~. The system size is 16 x 160, close to the maximum of gav. The full line is a least square 
fit to C(r, O)oc exp(-arU2)+exp[-a(L-r) u2] with a = 0.62. 

system sizes L with  L ,  chosen  at the m a x i m u m  Ofgav(L~), so tha t  L~ oc L:.  

F r o m  the fit we conc lude  tha t  q_L = 0.23 __+ 0.01. 
C o n c e r n i n g  the spat ia l  co r re l a t ion  func t ion  C(r, 0), S h a n k a r  and  

M u r t h y  repor t  the result  [see Eqs. (3.39) and  (3.43) in ref. 13] 

C(r, 0) ~ exp( - a r  m)  + e x p [  - a ( L  - r) 1/2 ] (10) 

where  the second  t e rm on  the r.h.s, takes  aga in  into  accoun t  the peri-  

odic  b o u n d a r y  condi t ions .  This  fo rm yields a nice least  square  fit to ou r  

numer ica l  data ,  as shown  in Fig. 3. N o t e  tha t  c o m p a r i n g  (9) and  (10), one  
observes  tha t  " space"  and  " t i m e "  seem to scale like r ~ ( log t) 2, as p red ic ted  

in ref. 9. 
F i she r  a rgues  t91 tha t  the result  (10) holds  for the typical cor re la t ions  

(i.e., those  c o r r e s p o n d i n g  to the m a x i m u m  of their  p robab i l i t y  d is t r ibu-  
t ion),  whereas  the ave rage  shou ld  decay  a lgebraical ly ,  since the la t te r  

should  be d o m i n a t e d  by rare,  s t rongly  cor re la ted  regions  of  the spin chain.  
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We tried to fit C(r, 0) to an algebraic decay similar to (9) with a different 
exponent r/tl, which gave much worse results. However, stipulating 

C(r, O) ~ r-"t'g(r/L, L J L : )  (11) 

we find that the relation C(L/2, O).~ L-"~'?(L,/L :) should hold, which gives 
indeed an acceptable data collapse for r/ll = 0.40_ 0.02 (using our estimate 
z = 1.70). The latter result agrees well with the result r/tl ~ 0.38 obtained in 
ref. 9. Furthermore, it is consistent with the scaling relation rl• 
(within the error bars) and qll = d+ z -  ?'/v = 2]~/v. We would like to stress 
that our data are compatible with both Eqs. (10) and (11 ), which, however, 
are based on assumptions excluding each other. 

Next we study the probability distribution of correlation functions in 
the spatial direction through the analysis of the associated generalized 
correlation lengths. (2~ The analysis is carried out using the transfer 
matrix approach; for more details see refs. 21 and 22. We focus on the spa- 
tial correlation function, for which we can use the general results for 
products of random matrices. In this case the latter consists of a succession 
of transfer matrices from row i to row i + I in the spatial direction, each of 
which is made by L~ spins. Since the generalized correlation lengths to be 
defined below are related to the first two Lyapunov exponents of an infinite 
product of transfer matrices, we have to choose L very large ( ~  106). An 
advantage of this approach is that one is left with only one scaling variable 
at the critical point since L J L :  is zero. 

In general each moment of the probability distribution of the correla- 
tion function defines a characteristic length scale, which we denote by ~ ,  
where q is the order of the moment (2~ 

~q~ = - lim 1 ln[G,(r)q]av (12) 
r~< rq 

where Gi(r) is the connected correlation function between the row i and the 
row i +  r. For example, r is the characteristic length scale of the average 
correlation function, while ~o is that of the typical correlation function. We 
shall then call ~0 the typical correlation length and ~ the average correla- 
tion length. It can be shown that if q>q ' ,  then ~q~q, (22)Taking into 
account this hierarchy, we find for the usual finite-size scaling 
hypothesis ('41 for the spatial generalized correlation lengths 

~q~ = L~- t/.-q~-q(( T -  T~) Ll~/:~'~) (13) 

where the zq can be called "generalized dynamical exponents." From the 
relation ~q >/~q, for q > q' it follows that Zq >>, Zq, and vq >~ vq,. In the scaling 
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form (13) it is assumed that the ~q diverge all at the same temperature T,., 
which in general need not be the case; see, for instance, ref. 20. As conse- 
quence, especially for large q, (13) should be modified allowing for a 
q-dependent T,. However, we stick to the scaling form (13) with T,. given 
by the ferromagnetic phase transition temperature. 

We have calculated (for technical details see refs. 21 and 22) the -q by 
computing the exponents ~q at the critical point T,. for different J2 for 
systems of sizes up to L~ = 8. The length of the product was 106. The expo- 
nent -q increases as j_, decreases. We get (with at least 10% accuracy) 

J2 Zo zl z2 

0.10 1.74 2.04 2.63 (14) 
0.05 2.12 3.23 5.26 

In all cases we found a good scaling at the critical temperature T,. given by 
(4). Our statistics are not accurate enough to investigate higher correlation 
lengths. The dynamical exponents increase systematically with decreasing J2 
and it cannot be ruled out that z ~  oo for j 2 ~ 0 .  Since the other 
exponents (such as Vq, see below, or fl, see above) are less susceptible to 
a variation in J2, we have to leave it open here whether this behavior 
indicates a crossover or an actual nonuniversality of z~ with respect to j_,. 

The exponents Vq are obtained from the data collapse using (13). In 
this case we computed the generalized correlation lengths for temperatures 
T> T,. and for system sizes up to L~ = 7. Again the length of the product 
was 10 6. With this statistics we were able to estimate only the first two 
exponents. The data for j2 =0.1, 0.05, and 0.01 lead to Vo~0.7 and vi = 1, 
in agreement with the analytical result of ref. 13, but disagreeing with the 
RNG result vt =2.19) In Fig. 4 we show a scaling plot for Go. 

We briefly discuss the time correlation length, for which we consider 
a semiinfinite strip in the time direction (L~ ~ oe). While for the spatial 
correlations we have an infinite product of random matrices, in the case of 
time correlations the transfer matrix is always the same, since the random- 
ness is only in the spatial direction. In this situation for each realization of 
disorder the correlation length is given by the inverse of the difference 
between the first two eigenvalues of the transfer matrix and yields, if 
averaged, the inverse of the typical correlation length, ~o I (note that this 
is equivalent to averaging the logarithm of the correlation function). For 
the typical time correlation length we stipulate again the usual finite-size 
scaling form 114~ 

- l  = L - " ~  T,.) L I/%) (15) r ,0  
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F o r  J2 = 0.1 we found, for example,  ~o ~ 1.3 and ~o ~ 1. Note  that  2 o # Zo 
and ~:~v. 

To summarize,  we performed a detai led finite-size scaling analysis of 
the zero- tempera ture  phase t ransi t ion occurr ing in a r a n d o m - b o n d  Ising 
chain by tuning the transverse magnet ic  field to some critical value. F o r  
this model  many analyt ical  results are known and our  analysis shows a 
good  agreement  with the results of Shanka r  and Mur thy  (j3> and concurs  
also with the R N G  predic t ion of  the existence of  different length scales with 
different critical exponents  v. <9) However,  we do  not  find the same values 
as those repor ted  in the latter. One possible explanat ion  of this fact might  
be the following: Fisher  (9> est imated the average correlat ions by only taking 
into account  the very rare events, which, in our  no ta t ion  (12) for t h e  

generalized correla t ion length ~q cor responds  to the limit q--+ oo. Conse-  
quently his result v = 2  should be an upper  bound  of our  vq. Wha t  are 
denoted  by typical correlat ions in ref. 9 seem to us more  related to our  
averaged correlat ion functions. 

Our  finite-size analysis leads to finite values for the dynamica l  expo- 
nent z, which might  be due to the small  system sizes we were confined to. 
However ,  for j~ ~ 0 we find z --+ oc>, in agreement  with as R N G  picture. (9~ 
Fur thermore ,  we find that  the o rder -pa ramete r  probabi l i ty  d is t r ibut ion 
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scales nontrivially at the critical temperatures. We made this observation 
also in connection with the cumulants of the probability distribution of 
correlation functions and we found a hierarchy of critical exponents for the 
generalized correlation lengths. Despite these facts, the numerical value fl/v 
for the finite-size scaling of the averaged spontaneous magnetization con- 
curs with the prediction made in ref. 9. 

All these phenomena merit further investigation (a more detailed dis- 
cussion on these results will be given elsewhere~2S~), especially with respect 
to the Griffiths singularities occurring already at temperatures above 
To. (9'13) Finally, we would like to mention that there is also a large overlap 
of the scenario we have encountered here with what might occur in two- 
and three-dimensional Ising spin glasses in a transverse field. (7'81 
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